X-ray Study of and Structural Approach to the Incommensurate Perovskite $\mathbf{P b}_{\mathbf{2}} \mathbf{C o W O} \mathbf{6}$

By Michel Bonin, Włodek Paciorek, Kurt J. Schenk and Gervais Chapuis
Institut de Cristallographie, Université de Lausanne, BSP Dorigny, CH-1015 Lausanne, Switzerland

(Received 21 April 1994; accepted 28 September 1994)

Abstract

$\mathrm{Pb}_{2} \mathrm{CoWO}_{6}$ in its incommensurate phase ($230 \leq T \leq 300 \mathrm{~K}$) invariably exhibits orientational domains. Such a polydomain state has been investigated by means of X-ray diffraction at 283 K . Assuming the modulation to be one-dimensional, we have identified the orientations of four domains. In view of the pseudosymmetry of this phase, many refinements of a purely displacive modulation had to be performed in order to establish the best suited unit cell and superspace group. Two major categories of candidates have arisen from this approach. (i) In a centered monoclinic or triclinic cell, there were clear indications of disorder in the structure, but owing to numerical instabilities, it was very difficult to decide whether this phenomenon was due to an occupational modulation or to a more complex domain structure (overlapping satellites, presence of antiphase domain boundaries etc.). (ii) In a primitive monoclinic cell model, a purely displacive modulation was conclusive. In each category, the major feature is an antiparallel shift of the Pb atoms. The main component of this shift involves a rotation and/or deformation of the oxygen octahedra. The structure of $\mathrm{Pb}_{2} \mathrm{CoWO}_{6}$ may be described to a good approximation as displacively modulated, but occupational modulation and coherent domains will also have to be added to the model in order to reach an even more satisfactory picture of this elusive phase.

Introduction

The complex perovskite $\mathrm{Pb}_{2} \mathrm{CoWO}_{6}$ (PCW) exhibits some fascinating features that make it an ideal study ground for both material science and the theory of phase transitions. Its utility is, however, severely hampered by several growth sectors (Brixel, Boutellier \& Schmid, 1987) and the existence of microdomains in most of its phases. These domains almost entirely thwart any kind of physical measurement and, not surprisingly, rather diverging opinions may be retrieved from the literature. The structure of PCW is presented in Fig. 1 and its phase diagram in Table 1.

The unit cell, $a_{c}=8.013 \AA$, and space group, $F m \overline{3} m$, of phase I (above 300 K) are certainly widely accepted, and even the structure offers little reason for doubt. Co and W atoms are perfectly ordered, whereas Pb and O
atoms occupy the disordered positions (Baldinozzi, Sciau \& Lapasset, 1992) known from other perovskites.

There exists some consensus regarding the crystal system of phase II ($300-230 \mathrm{~K}$). Optical crystallography (Brixel, Werk, Fischer, Bührer, Rivera, Tissot \& Schmid, 1985), X-ray powder diffraction (Kim, Lee \& Choo, 1992) and especially the powerful electron-diffraction study by Sciau, Krusche, Buffat \& Schmid (1990) conclude phase II to be monoclinic with the unique axis lying along one of the cubic [011] axes. The metric is pseudotetragonal, but more precise experiments suspect one of the angles to be slightly different to 90°. Phase II is a multidomain state, as shown by Sciau et al. (1990) and Randall, Markgraf, Bhalla \& Baba-Kishi (1989). The unit cell and space group are strongly author dependent. This divergence is not surprising for it is clear that normal X-ray diffraction cannot yield the correct unit cell because of the overlapping of reflections from different domains, and powder diffraction can overlook doubling of the cell too easily. Recently, however, in a careful high-resolution X-ray investigation Sciau, Calvarin, Sun

Fig. 1. View of the double perovskite $\mathrm{Pb}_{2} \mathrm{CoWO}_{6}$.

Table 1. Phase diagram of $\mathrm{Pb}_{2} \mathrm{CoWO}_{6}$ Question marks indicate unconfirmed or unknown properties.

First order			
300 K		First order	
Phase II	230 K	Phase III	9 K
Phase I	Phase IV		
Cubic	Monoclinic (Inc.)	Orthorhombic	Orthorhombic
Fm3m $(Z=4)$	$2 / m(Z=?)$	$P 2_{1} c n(Z=4)$	$?$
Paraelectric	Antiferroelectric(?)	Ferroelectric(?)	$?$
Paraelastic	Ferroelastic	Ferroelastic	$?$
Paramagnetic	Paramagnetic	Paramagnetic	Ferromagnetic

\& Schmid (1992) have made a strong case for a cell: $\mathbf{a}_{\mathbf{m}}=\mathbf{a}_{\mathbf{c}}, \mathbf{b}_{\mathbf{m}}=\frac{1}{2}\left(\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right), \mathbf{c}_{\mathbf{m}}=\frac{1}{2}\left(-\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right)$.

Of phase III (below 230 K), only the unit cell $a_{0}=$ $\mathbf{a}_{\mathbf{c}}, \mathbf{b}_{\mathbf{o}}=\frac{1}{2}\left(\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right), \mathbf{c}_{\mathbf{o}}=-\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}$ (Bührer, Rüdlinger, Maaroufi, Toledano, Schmid, Brixel \& Sciau, 1989) and the space group, $P 2_{1} c n$ or Pmcn, (Baldinozzi, Sciau \& Buffat, 1993) are known. The orientations of $\mathbf{b}_{\mathbf{o}}$ and $\mathbf{c}_{\mathbf{0}}$, however, with respect to the cubic axes are not at all clear. The former space group should be favored since it allows an ordered ferroelectric configuration. The rotation of the oxygen octahedra about $\mathbf{a}_{\mathbf{0}}=\mathbf{a}_{\mathbf{c}}$, found in the isomorphous $\mathrm{Pb}_{2} \mathrm{MgWO}_{6}$ by Baldinozzi et al. (1993), might turn out to be valid for PCW as well. In any case, it has already been postulated by Aleksandrov \& Misyul (1981) in a theoretical analysis of the possible low-temperature phases in double perovskites.

Very little is known about phase IV. It has been mentioned by Kizhaev \& Bokov (1966) and Brixel et al. (1985), and its symmetry is conjectured to be orthogonal. Indeed, the III \rightarrow IV transition at $\sim 9 \mathrm{~K}$ seems to be of magnetic or magnetic-structural origin.

At $\sim 300 \mathrm{~K}$, phase I is transformed into the incommensurate phase II via a first-order transition (Filip'ev \& Fesenko, 1964; Tamura, 1978). This is quite unexpected for a classical incommensurate phase should not be stabilized by a first-order transition.

At $\sim 230 \mathrm{~K}$, phase II transforms into a commensurate superstructure, phase III, but the typical lock-in behavior of the wavevector has not been observed (Tamura, 1978; Sciau et al., 1990). A further complication consists of a coexistence of phases II and III, observed by some authors in some samples.

A knowledge of even the unit cells and space groups of the four phases would clearly benefit research in this system, and it would decisively advance the understanding of the phase diagram of PCW.

In this contribution we set out to combine recent results of electron diffraction (Sciau et al., 1990) with our X-ray diffraction measurements in order to determine the most convincing unit cell and space group of phase II of PCW, as well as an approximation of its structure.

Experimental

Selection of the sample

The samples of PCW used in this study have been grown using a flux of PbO (Sun, Bouteiller, Sciau,

Burkhardt, Rodriguez \& Schmid, 1991). Two types of specimens were tested for X-ray analysis: polished thin sections prepared for optical microscopy of ferroelastic domains and unpolished samples. Better X-ray results were obtained from the latter. Specimens with thickness $10 \leq d \leq 100 \mu \mathrm{~m}$, which permitted the observation of extinction under crossed Nicols for at least one orientation, were selected.

The chosen sample was first examined on a precession chamber by recording several reciprocal layers. The satellite reflections could be clearly identified, and no splitting of main reflections was detected. The absence of commensurate superstructure reflections was also verified (by visual inspection). The principal reflections could be indexed according to the cubic F-centered cell of phase I (Fig. 1). Satellite reflections appeared in the vicinity of the systematically absent reflections $(h k l)=$ (eoo) or $(h k l)=(o e e)$, the latter ones being very weak. All satellites could be expressed in terms of the four vectors

$$
\begin{aligned}
& \mathbf{Q}_{1}= \pm\left(q_{c 1}, q_{c 2}, q_{c 3}\right), \\
& \mathbf{Q}_{2}= \pm\left(-q_{c 1}, q_{c 2}, q_{c 3}\right), \\
& \mathbf{Q}_{3}= \pm\left(q_{c 1}, q_{c 2},-q_{c 3}\right), \\
& \mathbf{Q}_{4}= \pm\left(-q_{c 1}, q_{c 2},-q_{c 3}\right),
\end{aligned}
$$

with $q_{c 1} \simeq \frac{1}{12}$ and $q_{c 2}=q_{c 3} \simeq \frac{1}{6}$.
Subscripts are used as follows: c cubic, m monoclinic and o orthorhombic.

Data collection

The sample was measured on an automatic diffractometer (CAD-4, Delft Instruments) at a temperature of $283 \pm 1 \mathrm{~K}$ (Oxford Cryosystems). To minimize absorption, silver radiation was used $(\lambda=0.56087 \AA)$. Intensities were recorded using the standard $\omega / 2 \theta$ technique. First, main reflections ($0 \leq 2 \theta \leq 60^{\circ}$) were collected, then satellites ($0 \leq 2 \theta \leq 42^{\circ}$). For each reflection $\mathbf{H}=(h k l)$, eight satellites were measured at \mathbf{H} $\pm \mathbf{Q}_{i}(i=1,4)$. Absorption (Gaussian integration, based on morphology), Lorentz and polarization corrections were applied to intensities. The stability of the experimental setting was monitored by periodically measuring standard reflections including main and satellite intensities (Table 2).

Unit cell and superspace group

The lattice parameters of the pseudotetragonal cell, obtained from accurately centering 25 reflections, are presented in Table 2. The long-standing ambiguity regarding the type of modulation in PCW seems to have been resolved by Sciau et al. (1990). Indeed, these authors have shown that a monodomain of PCW exhibits a one-dimensional modulation. Our eight observed satellites must, therefore, be interpreted as

Table 2. Crystal data and $D C$ parameters for $\mathrm{Pb}_{2} \mathrm{CoWO}_{6}$ at 283 K

Temperature (K)	283.0 (5)
a (${ }_{\text {A }}$)	7.964 (2)
b (${ }_{\text {A }}$)	8.021 (2)
$c(A)$	8.023 (2)
$\alpha\left({ }^{\circ}\right)$	89.90 (2)
$\beta\left(^{\circ}\right)$	90.00 (2)
$\gamma\left({ }^{\circ}\right)$	90.00 (2)
$V\left(\AA^{3}\right)$	512.5 (2)
Z	4
M_{r}	753.2
$\lambda(\mathrm{A})$	0.56086
Scan width	$0.60+0.45 \tan \theta$ (main)
	$0.70+0.45 \tan \theta$ (satellites)
Scan speed (${ }^{(1)} \mathrm{min}^{-1}$)	0.12-6.71
$\mu(\mathrm{Ag} \mathrm{K} \mathrm{\alpha})\left(\mathrm{mm}^{-1}\right)$	49.50
$T_{\text {min }} / T_{\text {max }}$	0.037/0.369
$D_{x}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	9.77
$F(000)$	1252
Modulation vector	$\mathrm{q}=0.081$ (5)a* $\mathbf{a}^{*} 0.164(5) \mathbf{b}+0.164(5) \mathbf{c}^{*}$
$(m=0) \quad 14 \leq h \leq-1$	7080 main reflections
$\begin{aligned} & -14 \leq k \leq 14 \\ & -14 \leq l \leq 14 \end{aligned}$	
$\left.\begin{array}{rl} (\|m\|=1) & -0 \end{array}\right)=h \leq-100 \text { } \begin{aligned} -9 & \leq k \leq 9 \\ -9 & \leq 1 \leq 9 \end{aligned}$	3180 satellite reflections
Loss of standard intensities	$<1 \%$ for main reflections (850 h) $<1 \%$ for satellites (220h)
Fluctuations	$\left\|I_{s}-\bar{I}_{s}\right\|<4$ e.s.d. $\left(\bar{I}_{s}\right)$

a superposition of four orientational domains. For a single-domain orientation, the modulation vector can be expressed as $\mathbf{q}_{c} \simeq \pm\left(\frac{1}{12}, \frac{1}{6}, \frac{1}{6}\right)$. The remaining orientations can be obtained, e.g. by rotations about the pseudotetragonal axis $\mathbf{a}_{\mathbf{c}}^{*}$ by ± 90 and $\pm 180^{\circ}$ (Fig. 2).

The data collection did confirm that the satellites tend to cluster around the systematically absent reflections of the F-centered cell with parity classes (eoo) and (oee). The lattice centering is thus maintained and the symmetry of the incommensurate phase can be described in terms of a centered cell assuming an adequate choice of the irrational part of the modulation wavevector. One such possibility is an I-centered Bravais lattice in the cell $\mathbf{a}_{\mathbf{m}}=\mathbf{a}_{\mathbf{c}}, \mathbf{b}_{\mathbf{m}}=\frac{1}{2}\left(\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right), \mathbf{c}_{\mathbf{m}}=\frac{1}{2}\left(-\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right)$ [Fig. 3(a)]. In these axes, the modulation vectors corresponding to the identity domain have the form $\mathbf{q}_{m 1} \simeq \pm\left(\frac{11}{12}, 0, \frac{1}{6}\right)$ or $\mathbf{q}_{m 2} \simeq \pm\left(\frac{1}{12}, 0, \frac{5}{6}\right)$, and the satellite reflections lie in

Fig. 2. Illustration of twin components and satellite (full circles) configuration around a forbidden main reflection (open circle). Each domain $D_{i}(i=1,4)$ corresponds to a vector $\mathbf{Q}_{i}(i=1,4)$, as defined in Selection of the sample in the Experimental section.
the reciprocal plane perpendicular to the monoclinic axis [Fig. 3(b)]. Accordingly, the Bravais class in superspace (de Wolff, Janssen \& Janner, 1981) is

$$
P_{1}^{\prime 2 / m}
$$

The 3180 satellite reflections can be classified in four sets D_{1}, D_{2}, D_{3} and D_{4}, corresponding to $\mathbf{Q}_{i}(i=1,4)$. For each set, the internal agreement for data larger than 3σ (2127 reflections) in the Laue symmetry $2 / m$ is presented in Table 3. The agreement being reasonable in each of the domains, the solution of the incommensurate phase has been undertaken with the complete set of measurements. This method has the advantage of removing the ambiguities on the exact intensities of the main reflections (Jameson, 1982).

The systematic absences of the 2644 satellite reflections larger or equal to zero were analyzed. The four classes of satellite reflections seem to comply (Table 4) with the special reflection condition $m=2 n$ for holm reflections (monoclinic axis \mathbf{b}^{*}). Within the 3σ criterion we can propose the following superspace group (de Wolff et al., 1981) or any of its subgroups

$$
P_{1} / \frac{2}{1} /{ }_{1}^{n}
$$

From the 2127 reflections larger than $3 \sigma, 40$ reflections were rejected on the basis of their profile.

Structure refinements

Some refinements, using the two modulation vectors $\mathbf{q}_{m 1}$ and $\mathbf{q}_{m 2}$, were carried out in the I-centered cell $\mathbf{a}_{\mathbf{m}}=$ $\mathbf{a}_{\mathbf{c}}, \mathbf{b}_{\mathbf{m}}=\frac{1}{2}\left(\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right), \mathbf{c}_{\mathbf{m}}=\frac{1}{2}\left(-\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right)$, while others

(a)

(b)

Fig. 3. (a) Monoclinic basis vectors (bold) described in terms of the cubic F-centered cell. (b) ($h, 2 n, l$)-type layers in the monoclinic indexation and different choices of the modulation vectors q. (Main reflections, full circles; satellite reflections, open circles.) The vector $\mathbf{q}_{m 3}$ corresponds to the vector \mathbf{q}_{c} which was used for the collection of the data reported in Table 2.

Table 3. Internal agreement factors $R_{\text {int }}$ for the intensities of equivalent satellite reflections in Laue symmetry $2 / m$ for each of the four classes $D_{1}, D_{2}, D_{3}, D_{4}$

$$
\mathrm{R}_{\mathrm{int}}=\left\{\left[\sum_{i} N_{i} \sum_{s} w_{s, i}\left(\bar{F}_{i}-F_{s, i}\right)^{2}\right] /\left[\sum_{i}\left(N_{i}-1\right) \sum_{s} w_{s, i} F_{s, i}^{2}\right]\right\}^{1 / 2}
$$

where the summation s involves the N_{i} symmetry-equivalent reflections with weight w_{i} and i the independent group of reflections (Blessing, 1987).

Domain	Reflections $I>3 \sigma(I)$	$R_{\text {int }}$	Unique reflections
D_{1}	589	0.096	249
D_{2}	580	0.085	246
D_{3}	358	0.153	169
D_{4}	600	0.100	249

Table 4. Systematic absences corresponding to super-space-group operation $m(s)$ for each of the four satellite classes D_{1}, D_{2}, D_{3} and D_{4}

Domain	Reflections	$h 0 l m$ type	$h 0 l m$ type $I<3(I)$
D_{1}	682	25	25
D_{2}	694	26	26
		$h k 0 m$ type	$h k 0 m$ type $I<3 \sigma(I)$
D_{3}	569	32	32
D_{4}	699	26	26

were based on the corresponding primitive cell and $\mathbf{q}_{m 1}$. Further refinements, considering $\mathbf{q}_{m 4} \simeq \pm\left(\frac{11}{12}, 0, \frac{1}{3}\right)$, were also undertaken in the primitive cell $\mathbf{a}_{\mathbf{m}}=\mathbf{a}_{\mathbf{c}}, \mathbf{b}_{\mathbf{m}}=$ $\frac{1}{2}\left(\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right), \mathbf{c}_{\mathbf{m}}=\left(-\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right)$.

Treatment of domains

The program prepared for our refinements is an extension of Paciorek's (1991) MSR program. New features have been added for refining data from multiple macroscopic domains, and for treating partially overlapping main reflections correctly.

In this formalism, point-group operations R_{i} are derived that link a satellite reflection from domain i to the corresponding satellite of a reference domain (associated with the identity operation). These symmetry operations are then used to compute the structure factor of the main reflections (that contain contributions from all domains) according to

$$
F_{c}^{2}=\sum_{i=1}^{n-1} \alpha_{i} F_{i}^{2}+\left(1-\sum_{i=1}^{n-1} \alpha_{i}\right) F_{n}^{2}
$$

In this expression α_{i} is the volume fraction occupied by the i th domain (α_{i} may be determined from the satellite intensities), n represents the total number of domains of which $n-1$ are independent ($\sum_{i=1}^{n} \alpha_{i}=1$), and $F_{i}(\mathbf{H})=F_{n}\left(R_{i}^{l} \mathbf{H}\right)\left(F_{n}\right.$ is the structure factor corresponding to the identity operation (domain) and R_{i} the symmetry operation generating the i th domain).

The expression for the atomic coordinates is given by

$$
x_{i}^{\mu}\left(\bar{x}_{4}\right)=\bar{x}_{i}^{\mu}+u_{i}^{\mu}\left(\bar{x}_{4}\right),
$$

where $\bar{x}_{4}=\mathbf{q} \cdot \mathbf{x}+t$ and u_{i}^{μ} is the modulation function for the i th coordinate of the μ th atom. The programme
refines the coefficients of the expansion

$$
u_{i}^{\mu}\left(\bar{x}_{4}\right)=\sum_{n>0}\left(a_{i, n}^{\mu} c_{n}+b_{i, n}^{\mu} s_{n}\right),
$$

with $c_{n}=\cos \left(2 \pi n \bar{x}_{4}\right)$ and $s_{n}=\sin \left(2 \pi n \bar{x}_{4}\right)$.

Results

Since only first-order satellites could be observed, and because of the presence of several orientational domains it appeared necessary to confirm our tentative reflection condition ($m=2 n$ for $h 0 l m$) by preliminary refinements. These unambiguously yielded the existence of the superspace symmetry operation $m(s)$ corresponding to a mirror plane associated with a phase shift of $\frac{1}{2}$ along t (Tables $5 a$ and $5 b$). If this structure contains a mirror operation, it can only be of the type $m(s)$. The twin operations relating the four domains were identified by a refinement in $I 2 / \mathrm{m}$ and using the modulation vectors $\mathbf{q}_{m 1} \simeq \pm\left(\frac{11}{12}, 0, \frac{1}{6}\right)$ or $\mathbf{q}_{m 2} \simeq \pm\left(\frac{1}{12}, 0, \frac{5}{6}\right)$. The respective population parameters associated with the four domains rotated by $\pi, \pi / 2$ and $-\pi / 2$ (operations $2,3,4$ in Tables $5 a$ and $5 b$) correspond to the best agreement.*

We emphasize that the proposed domain structure leaves the direction $[100]_{c}$ invariant and is thus compatible with our refined lattice parameters and those obtained from powder diffraction. Indeed, a symmetry operation requesting permutations of the type $[100]_{c} /[010]_{c}$ or $[100]_{c} /[001]_{c}$ would yield for $[100]_{c}$ an average value closer to $[010]_{c}$ or $[001]_{c}$.

The refinement in the I-centered cell $\mathbf{a}_{\mathbf{m}}=\mathbf{a}_{\mathbf{c}}, \mathbf{b}_{\mathbf{m}}=$ $\frac{1}{2}\left(\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right), \mathbf{c}_{\mathbf{m}}=\frac{1}{2}\left(-\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right)$, in $2 / m(\overline{1}, s)$, modulation vector $\mathbf{q}_{m 1} \simeq \pm\left(\frac{11}{12}, 0, \frac{1}{6}\right)$ and using anisotropic displacement parameters (ADP's), converged rapidly. This model confirms the displacive character of the modulation, which can be interpreted as a transverse displacement with a polarization normal to the monoclinic plane. It is, however, necessary to mention that the corresponding ADP, β_{33}, is huge (Table $6 a$). Fig. 4 reveals some structural characteristics obtained in $I 2 / m(\overline{1}, s)$ with $\mathbf{q}_{m 1}$. Various attempts to release the symmetry constraints on the atoms did not improve the ADP's. The only modification which seems to be able to influence these parameters is a reduction to triclinic symmetry (Table $6 b$) or a change to a primitive lattice (Table 7). Additional refinements in the monoclinic I-centered cell and the alternative choice of the modulation vector $\mathbf{q}_{m 2} \simeq \pm\left(\frac{1}{12}, 0, \frac{5}{6}\right)$ have been carried out. If the nature of the mirror plane is confirmed, the convergence is, however, very slow, especially for satellites. The displacement parameters become nonpositive definite. This model can thus be discarded. The results presented in Table 8 have been obtained in $I 2 / m(\overline{1}, s)$.

[^0]Table 5. Results of a preliminary isotropic refinement in $I 2 / m(\overline{1}, 1)$ and $I 2 / m(\overline{1}, s)$ for $\mathbf{q}_{m 1}$ and $\mathbf{q}_{m 2}$
OSR is defined as the ratio $\sum F_{c} / \sum F_{o}$.

(a) $\mathbf{q}_{m 1}$			$q=(11 / 12,0,1 / 6)$	$12 / m(\overline{1}, 1)$	$q=(11 / 12,0,1 / 6)$	
		$I 2 / m(\overline{1}, s)$				
Twin						
operation		$V_{\text {frac }}$			$V_{\text {frac }}$	
D_{1}		0.2759 (17)			0.2608 (90)	
D_{2}		0.3072 (11)			0.2732 (52)	
D_{3}		0.3563 (11)			0.3238 (55)	
D_{4}		0.0606 (56)			0.1421 (49)	
Layers	$m=-1$	$m=0$	$m=1$	$m=-1$	$m=0$	$m=1$
No of reflections	1000	1606	1087	1000	1606	1087
OSR	0.9701	1.0181	0.9554	0.6607	0.9833	0.6552
R_{w}	0.1327	0.0650	0.1391	0.6642	0.1042	0.6324
R	0.1192	0.0630	0.1307	0.6126	0.0924	0.5706
(b) $\mathbf{q}_{m 2}$						
		$12 / m(1, s)$	$q=(1 / 12,0,5 / 6)$	$I 2 / m(1,1)$	5/6)	
Twin						
operation		$V_{\text {frac }}$			$V_{\text {frac }}$	
D_{1}		0.2772 (29)			0.2547 (93)	
D_{2}		0.3144 (20)			0.2781 (55)	
D_{3}		0.0591 (94)			0.1245 (48)	
$\begin{array}{ll}D_{4} & 0.3492(19) \\ 0.3426(58)\end{array}$						
Layers	$m=-1$	$m=0$	$m=1$	$m=-1$	$m=0$	$m=1$
No of reflections	1087	1606	1000	1087	1606	1000
OSR	0.9059	0.9940	0.9674	0.5565	1.0003	0.6158
$R_{\text {w }}$	0.2120	0.1140	0.2185	0.6780	0.0924	0.6543
R	0.1872	0.0801	0.1919	0.6133	0.0770	0.5997

Fig. 4. Structural characteristics obtained using $I 2 / m(\overline{1}, s)$ and $\mathbf{q}_{m 1}$. (a) Modulation displacements along y for all atoms and (b) modulation displacements for O 2 in a general position.

The results obtained in the refinement of the mode featuring $\mathbf{q}_{m 1} \simeq \pm\left(\frac{11}{12}, 0, \frac{1}{6}\right)$ and a primitive lattice indicate that the low-temperature cell $\mathbf{a}_{\mathbf{m}}=\mathbf{a}_{\mathbf{c}}, \mathbf{b}_{\mathbf{m}}=\frac{1}{2}\left(\mathbf{b}_{\mathbf{c}}\right.$ $\left.+\mathbf{c}_{\mathbf{c}}\right), \mathbf{c}_{\mathbf{m}}=\left(-\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right)$, found by Baldinozzi et al. (1993), might also be a plausible choice for the average cell of phase II. Such a model was, therefore, tested although the refinement had to be carried out with a subset of the necessary reflections. This refinement with superspace symmetry $P m(s)$ and $\mathbf{q}_{m 4} \simeq \pm\left(\frac{11}{12}, 0, \frac{1}{3}\right)$ converged remarkably well and gave excellent agreements (Table $9)$. The ADP's of the Pb atoms are more compatible with a displacive model. The structural characteristics of this refinement are presented in Fig. 5. From the variation of θ (Fig. 6) and a rigid-body approximation, it is possible to evaluate the maximum value of the rotation φ of the oxygen octahedra. This value of $\varphi_{\max }=\mid \theta-$ $\pi / 2 \mid / 2 \simeq 7.5^{\circ}$ is pleasingly close to the value refined by Baldinozzi et al. (1993) for the low-temperature phase of the isomorphous $\mathrm{Pb}_{2} \mathrm{MgWO}_{6}$.

Discussion

A series of refinements of the incommensurate phase of $\mathrm{Pb}_{2} \mathrm{CoWO}_{6}$ have been performed for the first time on a multidomain sample consisting of four orientational domains, the identity and three domains generated by rotation of 90,180 and 270° about one of the cubic axes of phase I (a in Table 2). In the incommensurate phase and cubic setting, this axis is well differentiated from

Table 6. Results of a refinement in $I 2 / m(\overline{1}, s)$ and in $I 1$ for $\mathbf{q}_{m 1}$, with ADP's for the Pb atoms

The 32 refined parameters include scale factor, extinction and three twin-volume fractions. All the noncoordinate parameters absent in the table are constrained by symmetry to be equal to zero (Petríček \& Coppens, 1988).

the other two. The indexation of the satellites (direction of the modulation) and the symmetry $2 / m(\overline{1}, s)$ or $m(s)$ in superspace has been clearly established.

Our simplest model (closest to observations) is based on a monoclinic cell derived from the pseudotetragonal cell. In the I-centered cell $\mathbf{a}_{\mathbf{m}}=\mathbf{a}_{\mathbf{c}}, \mathbf{b}_{\mathbf{m}}=\frac{1}{2}\left(\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right)$, $\mathbf{c}_{\mathbf{m}}=\frac{1}{2}\left(-\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right)$, the refinements are very satisfactory, although some ADP's are too large.

Table 7. Results of a refinement in $\operatorname{Pm}(s)$ for $\mathbf{q}_{m 1}$, with ADP's for the Pb atoms

Layers	All	$m=-1$	$m=0$	$m=1$
$\begin{gathered} \text { No. of } \\ \text { reflections } \end{gathered} 3693$		1000	1606	1087
OSR	0.9987	0.9932	1.0011	0.9936
R_{w}	0.0571	0.0895	0.0408	0.0923
R	0.0478	0.0758	0.0333	0.0836
	Pb_{1}	Pb_{2}	Pb_{3}	Pb_{4}
x_{1}	0.26156 (17)	0.74086 (17)	0.26219 (17)	0.74741 (17)
$a_{2,1}$	0.03514 (24)	0.03676 (30)	-0.02953 (32)	0.04487 (25)
$b_{2,1}$	-0.02729 (25)	0.02189 (27)	0.03638 (27)	0.00094 (26)
x_{3}	0.48030 (23)	0.49264 (26)	0.00418 (33)	0.01335 (22)
β_{11}	0.00452 (09)	0.00797 (16)	0.00387 (09)	0.00912 (16)
β_{22}	0.00283 (17)	0.00968 (34)	0.00524 (19)	0.00295 (26)
β_{33}	0.00740 (21)	0.01243 (28)	0.01419 (27)	0.00804 (25)
β_{13}	0.00111 (14)	-0.00320 (25)	0.00079 (21)	0.00244 (19)

Table 8. Results of a refinement in $12 / m(\overline{1}, s)$ for $\mathbf{q}_{m 2}$, with $A D P ' s$ for the Pb atom

Layers No. of	All	$m=-1$	$m=0$	$m=1$
reflections	3693	1087	1606	1000
OSR	0.9902	0.9495	1.0026	0.9779
R_{w}	0.0903	0.1570	0.0495	0.1668
R	0.0717	0.1346	0.0419	0.1402
	x_{1}	Pb		
	$a_{2,1}$	$0.24871(7)$		
	$b_{2,1}$	$-0.03283(9)$		
	x_{3}	$0.50030(6)$		
	β_{11}	$0.00731(3)$		
	β_{22}	$0.00400(6)$		
	β_{33}	$0.01389(8)$		
	β_{13}	$0.00016(8)$		

The refinements in a primitive cell $\mathbf{a}_{\mathbf{m}}=\mathbf{a}_{\mathbf{c}}, \mathbf{b}_{\mathbf{m}}=$ $\frac{1}{2}\left(\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right), \mathbf{c}_{\mathbf{m}}=\left(-\mathbf{b}_{\mathbf{c}}+\mathbf{c}_{\mathbf{c}}\right)$ and the superspace group $P m(s)$ seem to lead to the most convincing displacive model. Indeed, this choice gives excellent agreement with the measurements, in particular with the satellites. This model is clearly the best one under the hypothesis of a purely displacive modulation and it provides a ferrielectric character for this phase. It should, however, be confirmed by the observation of main or satellite reflections in the incommensurate phase, even by weak ones.

No presentation of the numerous attempts to refine disordered models (modulated or of even more complex domain structure) is made in this article. Indeed, the strong correlation between population parameters and twin-volume ratios led invariably to unrealistic values for these parameters.

We have, thus, been able to identify the principal characteristics of the incommensurability in $\mathrm{Pb}_{2} \mathrm{CoWO}_{6}$. Two types of competing interactions seem to coexist. One of antiferroelectric type associated with an antiparallel shift of the Pb atoms, including possible frustrations with second nearest neighbors, the other of

Table 9. Results of a refinement in $\operatorname{Pm}(s)$ for $\mathbf{q}_{m 4}$, with ADP's for the Pb atoms

Layers	s All	$m=-1$	$m=0$	$m=1$
$\begin{aligned} & \text { No. of } \\ & \text { reflections } \end{aligned} 3693$		1000	1606	1087
OSR	0.9987	0.9942	1.0000	0.9973
${ }_{R}{ }_{\text {w }}$	0.0547	0.0865	0.0382	0.0903
	0.0454	0.0733	0.0309	0.0814
x_{1}	$\underset{0.22761}{\mathrm{~Pb}_{1}}$	$\begin{gathered} \mathrm{Pb}_{2} \\ 0.25389 \end{gathered}$	$\begin{gathered} \mathrm{Pb}_{3} \\ 0.25804(20) \end{gathered}$	${ }_{0.22688}^{\mathrm{Pb}_{4}}(16)$
$\begin{aligned} & a_{2,1} \\ & b_{2,1} \end{aligned}$	0.03572 (28)	-0.02285 (29)	0.01817 (38)	-0.03049 (28)
	0.03154 (33)	-0.03202 (27)	-0.04268 (34)	-0.03098 (33)
x_{3}	0.00450 (17)	0.24020 (12)	0.50130 (17)	0.75717 (17)
	0.00295 (12)	0.00284 (09)	0.00446 (12)	0.00416 (14)
β_{22}	0.00136 (18)	0.00278 (19)	0.01367 (43)	0.00136 (19)
${ }_{\beta} \beta_{33}$	0.00130 (05)	0.00161 (06)	0.00325 (08)	0.00177 (06)
β_{13}	-0.00026 (09)	-0.00100 (07)	-0.00073 (15)	-0.00028 (10)
	Pb_{5}	Pb_{6}	Pb_{7}	Pb_{8}
x_{1}	0.74521 (17)	0.73902 (18)	0.76827 (14)	0.76055 (16)
$a_{2,1}$	-0.03974 (35)	0.04171 (25)	0.04063 (31)	0.02243 (31)
$b_{2,1}$	-0.04585 (32)	-0.00441 (33)	-0.01648 (33)	0.03457 (28)
x_{3}	0.00656 (17)	0.23979 (12)	0.50521 (15)	0.76513 (12)
β_{11}	0.00165 (09)	0.00489 (15)	0.00306 (14)	0.00245 (11)
β_{22}	0.00468 (22)	0.00203 (23)	0.00890 (34)	0.00263 (20)
β_{33}	0.00178 (06)	0.00229 (08)	0.00298 (08)	0.00229 (08)
β_{13}	0.00126 (09)	-0.00123 (09)	-0.00064 (13)	0.00039 (09)

(a)

(b)

Fig. 5. Typical configurations, from the refinement based on $\operatorname{Pm}(s)$ and $\mathbf{q}_{m 4}$, illustrating the evolution of the structure as a function of t.

Fig. 6. Variation of the angle θ as a function of the internal coordinate t from the refinement in $P m(s)$ and $\mathbf{q}_{m 4}$.
a more geometrical or sterical nature which corresponds to rotations and/or deformations of the oxygen octahedra in order to accommodate the displacements of the Pb atoms.

We would like to thank Professor H. Schmid and the members of his group for providing the crystal samples and for their continuous interest in the project. Financial support from the Swiss National Science Foundation is gratefully acknowledged.

References

Aleksandrov, K. \& Misyul, S. (1981). Kristallografiya 26, 1074.
Baldinozzi, G., Sciau, Ph. \& Buffat, P. A. (1993). Solid State Commun. 86, 541-544.
Baldinozzi, G., Sciau, Ph. \& Lapasset, J. (1992). Phys. Status Solidi A, 133, 17-23.
Blessing, R. H. (1987). Cryst. Rev. 1, 3-55.
Brixel, W., Boutellier, R. \& Schmid, H. (1987). J. Cryst. Growth, 82, 396-404.
Brixel, W., Werk, M. L., Fischer, P., Bührer, W., Rivera, J.-P., Tissot, P. \& Schmid, H. (1985). Jpn. J. Appl. Phys. Suppl. 24, 242-244.
Buhrer, W., Rudlinger, M., Maarouf, F., Toledano, P., Schmid, H., Brixel, W. \& Sciau, Ph. (1989). Physica B, 157, 10-11.
Filipev, V. S. \& Fesenko, E. G. (1964). Soviet Phys. Crystallogr. 9, 231-233.
Jameson, G. B. (1982). Acta Cryst. A38, 817-820.
Kim, H.-J., Lee, B.-C. \& Choo, W.-K. (1992). Ferroelectrics, 125, 233-238.
Kizhaev, S. A. \& Bokov, V. A . (1966). Fiz. Tverd. Tela, 8, 1554.
Paciorek, W. A. (1991). Methods of Structural Analysis of Modulated Structures and Quasicrystals, edited by J. M. Pêrez-Mato, F. J. Zúniga \& G. Madariaga, pp. 268-279. Singapore: World Scientific.
Petríćek, V. \& Coppens, P. (1988). Acta Cryst. A44, 235-239.
Randall, C. A., Markgraf, S. A., Bhalla, A. S. \& Baba-Kishi, K. (1989). Phys. Rev. B, 40, 413-416.

Sciau, Ph., Calvarin, G., Sun. B. N. \& Schmid, H. (1992). Phys. Status Solidi A, 129, 309-321.
Sciau, Ph., Krusche, K., Buffat, P. A. \& Schmid, H. (1990). Ferroelectrics, 107, 235-240
Sun, B. S., Bouteiller, R., Sciau, Ph., Burkhardt, E., Rodriguez, V. \& Schmid, H. (1991). J. Cryst. Growth, 112, 71-83.
Tamura, H. (1978). Ferroelectrics, 21, 449-450.
Wolff, P. M. de, Janssen, T. \& Janner, A. (1981). Acta Cryst. A37, 625-636.

[^0]: * A list of the structure factors has been deposited with the IUCr (Reference: JS0003). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

